SECTIONAL CHAMPIONSHIP

SOLUTIONS

S-1. 13 Find u_{1} first. Substituting, $u_{1}=-3(3)+7=-2$, and now $u_{2}=-3(-2)+7=\mathbf{1 3}$.
S-2. $(\mathbf{x}-\mathbf{4})(\mathrm{x}-\mathbf{1})\left(\mathbf{x}^{2}+\mathbf{5 x}-\mathbf{4}\right)$ This is equal to $x^{4}-(5 x-4)^{2}$, which factors as the difference of two squares: $\left(x^{2}-(5 x-4)\right)\left(x^{2}+(5 x-4)\right)$. The first factor can be rewritten but the second cannot, and the answer is $(x-4)(x-1)\left(x^{2}+5 x-4\right)$.

S-3. $\mathbf{1 2 5 \pi}$ The solid is a cylinder of radius 5 and height 5 , so compute $\pi \cdot 5^{2} \cdot 5=\mathbf{1 2 5} \pi$.
S-4. (1,2) The intersection point of the two lines will be on the line of reflection. Solve $2 x+2=\frac{1}{2} x-4$ to obtain $x=-4 \rightarrow y=-6$, so $(-4,-6)$ is on the line of reflection. Now, consider the x-intercept of the line $y=\frac{1}{2} x-4$, which is $(8,0)$. This point will be as far from $(-4,-6)$ as its image on $y=2 x+2$ will be, because distance is preserved in a line reflection. Therefore, the distance from the image point $(x, 2 x+2)$ to $(-4,-6)$ is $\sqrt{12^{2}+6^{2}}=\sqrt{180}$. Solve $\sqrt{(x+4)^{2}+(2 x+2+6)^{2}}=\sqrt{180}$ to obtain $x=-10$ or $x=2$. If $x=-10$, then the line of reflection would have a negative slope, so we reject this and choose $x=2 \rightarrow y=6$. The midpoint of the segment connecting $(2,6)$ and $(8,0)$ is on the line of reflection, so $(5,3)$ is on the line of reflection. The equation of the line passing through $(5,3)$ and $(-4,-6)$ is $y=x-2$. The ordered pair (a, b) is (1, $\mathbf{2})$.

S-5. $-\mathbf{- 2}$ The numerator can be factored by grouping to obtain $\frac{\left(x^{2}-4\right)(x-1)}{(x-2)(x-1)}=0$. The values $x=2$ and $x=1$ yield indeterminate forms when substituted, so the only value of x which satisfies the equation is $x=\mathbf{- 2}$.

S-6. | $\frac{1}{\mathbf{1 0 5}}$ |
| :---: |
| There are 8 choices for the first digit, but then only 1 for the second. There are 6 | choices for the third digit, but only 1 for the fourth. There are 4 choices for the fifth digit, but only 1 for the sixth. There are 2 choices for the seventh digit, but only 1 for the eighth. However, there is repetition among the digits, so the number of 8 -digit numbers satisfying the conditions is $\frac{8 \cdot 6 \cdot 4 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2}=4 \cdot 3 \cdot 2 \cdot 1$. This is a fraction of the $8!/(2 \cdot 2 \cdot 2 \cdot 2)=2520$ different 8 -digit numbers that can be made from those digits. The desired probability is $\frac{24}{2520}=\frac{\mathbf{1}}{\mathbf{1 0 5}}$.

R-1. Compute the least positive integer value of x that satisfies $x^{2}-6.1 x-7.92>0$.
R-1Sol. 8 Recognize that the left hand side factors as $(x-7.2)(x+1.1)>0$, so $x>7.2$ implies that we choose 8.

R-2. Let N be the number you will receive. A goat is tethered to the corner of a rectangular barn whose length is 10 meters and whose width is 4 meters. The tether is N meters long. Compute the goat's grazing area in square meters.
R-2Sol. 52π The goat gets $\frac{3}{4} \pi N^{2}$ square meters off of one corner of the barn. If $N>4$, then the goat gets another $\frac{1}{4} \pi(N-4)^{2}$ square meters. Substituting, we see that $N>4$, so the grazing area is $\frac{3}{4} \pi 8^{2}+\frac{1}{4} \pi 4^{2}$ or $\mathbf{5 2} \pi$ square meters.

R-3. Let N be the number you will receive. The circle centered at the origin with area N passes through two lattice points in the first quadrant: (A, B) and (B, A) where $A<B$. Pass back the ordered pair (A, B).
R-3Sol. $(\mathbf{4}, \mathbf{6})$ We have $A^{2}+B^{2}=N$, and substituting, we have $A^{2}+B^{2}=52$. The only lattice points satisfying this are $(4,6)$ and $(6,4)$. Pass back $(4,6)$.

R-4. Let (A, B) be the coordinates you will receive. The graph of the equation $y=A \cos x+B$ has a minimum at (C, D) where $0<C \leq 2 \pi$. Compute $C+D$.
R-4Sol. $\pi+2$ The period is 2π, and the minimum will be at $x=2 \pi / 2=\pi=C$. Substituting, we have $\overline{D=4} \cos \pi+6=2$, so our answer is $\pi+\mathbf{2}$.

R-5. Let N be the number you will receive. Circle O has diameter $\overline{A B}$. A circle P is inscribed in one of the semicircles formed by $\overline{A B}$. The semicircle has perimeter N. Compute the area of the inscribed circle.
R-5Sol. $\frac{\pi}{4}$ Let the area of the circle be r. The radius of the semicircle is $2 r$, so the perimeter of the semicircle is $4 r+2 \pi r$. Substituting, we have $r=1 / 2$, and the area is $\pi(1 / 2)^{2}=\frac{p i}{4}$.

